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ABSTRACT 

Evidence suggests that individual cognitive differences affect 

users’ memorability, visual behavior, and graphical pass-

words’ security. Such knowledge denotes the added value of 

personalizing graphical password schemes towards the 

unique cognitive characteristics of the users. However, real-

time and accurate cognition-based predictive user models are 

necessary to reach such a break-through. In this paper, we 

present the results of such an attempt, where an in-lab eye-

tracking study was conducted with 36 participants who com-

pleted a recall-based graphical password composition task. 

We adopted a credible cognitive style theory, and investigat-

ed a variety of eye-tracking metrics to predict participants’ 

cognitive styles. Results’ analysis reveals that inferring indi-

vidual cognitive differences in real-time during graphical 

password composition is feasible within a few seconds and 

that specific eye-tracking metrics correlate stronger with cer-

tain cognitive style groups. The findings further support the 

vision of incorporating real-time adaptive mechanisms in 

graphical password schemes for the benefit of service pro-

viders and end-users. 
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INTRODUCTION 
Graphical user authentication (GUA) is a widely deployed 

alternative to traditional text-based authentication. There are 

two types of GUA schemes: recall-based (i.e., users draw a 

graphical password) and recognition-based (i.e., users select 

a set of images to form a password). Despite that GUA was 

proposed as a possible solution for the memorability and 

security issues associated with textual passwords [19], recent 

research revealed that people make predictable choices in 

GUA too, affecting both the memorability and the security of 

passwords [2,6,12,14].  

Predictable password choices are affected, among others, by 

cognitive characteristics [2,6,12], and when they are related 

to visual behavior, such as the Field Dependence-

Independence (FD-I) theory [36], they affect password com-

position [14,15] and login [3] in GUA. FD-I suggests that 

individuals have different approaches in retrieving, recalling, 

processing, and storing visual information, and characterizes 

individuals either as field dependent (FD) or field independ-

ent (FI), based on their ability to process visual information 

and identify details in complex scenes. 

Despite that research results raise the need for providing as-

sistive and/or adaptive mechanisms in the GUA domain, this 

is currently impractical since elicitation of FD-I style is 

achieved through time-consuming in-lab tools. Hence, this 

work aims to investigate whether user’s FD-I style can be 

predicted implicitly in real-time during graphical password 

composition, using eye-tracking data, given that FD-I is re-

lated to visual behavior [18,21,24]. We envisage that this will 

enable GUA scheme designers to predict the users’ cognitive 

characteristics, include a time-related predictive model to the 

GUA schemes, and provide design solutions catered for the 

users’ cognitive characteristics during registration and/or 

login. This is of major importance considering that the users’ 

cognitive characteristics have been associated with perfor-

mance differences in terms of memorability and security, and 

such knowledge could be used to provide GUA schemes 

adjusted to users who share common cognitive characteristics 

to assist them during GUA tasks. 

RELATED WORK 

Several research attempts have been made to infer cognitive 

styles and abilities in varying domains. Frias-Martinez et al. 

[7] showed that the Holistic-Analytic cognitive style can be 

inferred when users are engaged in information seeking tasks 

in a digital library (accuracy over 75%). Clewey et al. [4] 
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revealed that the Holism-Serialism cognitive style can be 

inferred when users are engaged in content exploration tasks 

within web-based instruction environments (accuracy over 

79%). Similar findings were revealed for the FD-I cognitive 

style [5]. Hochberg et al. [10] revealed that the automatic 

annotation of Analytic-Intuitive cognitive style can be 

achieved when users are engaged with an image-based clini-

cal reasoning task (accuracy over 84%). Wang et al. [34] 

revealed that Adaptive/Innovative and Analytic/Intuitive 

cognitive styles can be inferred from user-generated social 

media content (accuracy over 65%).  

Focusing on eye-gaze based elicitation, Raptis et al. [26] re-

vealed that FD-I cognitive style can be inferred from visual 

search and visual decision-making tasks (accuracy over 

75%). Regarding elementary cognitive attributes (i.e., skills 

and abilities), Steichen et al. [29,30] performed classification 

experiments to classify users according to their perceptual 

speed, verbal and visual working memory when performing 

information visualization tasks; Yelizarov and Gamayunov 

[37] developed a mechanism to detect the users’ cognitive 

overload and adapt the content quantity. 

The discussed research endeavors lie under diverse applica-

tion domains and do not consider time as a classification fac-

tor. Focusing on the user authentication domain, to the 

knowledge of the authors, no attempt has been made to clas-

sify users based on their cognitive characteristics using their 

eye-gaze data in real-time. Given existing effects of FD-I in 

GUA [2,14], we stress the importance of providing assis-

tive/adaptive mechanisms in the GUA domain, and consider 

this work as a first step towards this vision. 

USER STUDY 

Research Questions 

Q1: Is it feasible to use real-time eye-gaze data to elicit the 

FD-I style when users are engaged in a graphical password 

composition task? 

Q2: Which eye-gaze metrics are most predictive for FIs and 

which metrics are most predictive for FDs? 

Study Instruments and Metrics  

Graphical User Authentication Scheme 

We used Windows™ Picture Gesture Authentication [13], a 

popular and widely-used recall-based GUA scheme. The 

users choose a background picture and draw three gestures 

on it. The gestures can be any combination of circles, lines, 

and/or taps. The combination, the size, the position, and the 

direction of the drawn gestures constitute the graphical pass-

word.  

Equipment 

The participants created their password using a Samsung 

Galaxy Tab S2 (9.7" screen size with 2048x1536 pixels reso-

lution). Their eye movements were captured using  

Tobii Pro Glasses 2 (50Hz). Fixations were extracted using a 

velocity threshold identification (I-VT) algorithm [17],  

based on the I-VT algorithm provided by Tobii. 

Cognitive Style Elicitation Test 

To elicit the participants’ FD-I style, we used Group Embed-

ded Figures Test (GEFT) [23], a credible and validated time-

administered tool [16]. GEFT consists of 18 pattern-

recognition tasks, where the users are asked to identify and 

outline a given pattern within a complex context, in a given 

amount of time. The GEFT score is the number of the cor-

rectly identified patterns; thus, the GEFT score ranges be-

tween 0 and 18. The higher the score, the more field-

independent the individual is.  

Eye-Gaze Metrics 

Following common practice, we selected fixation count and 

fixation duration as suggested in [25], and saccade length as 

suggested in [8], which could provide trends in user attention 

patterns. For each of these basic measures, we included com-

puted features, as discussed in [33]. For fixation count, we 

calculated the total number of fixations and the fixation rate. 

For fixation duration, we calculated the sum, mean, max, and 

std. deviation. For saccade length, we calculated the sum, 

mean, max, and std. deviation.  

Classification Setup 

To investigate whether it is possible to elicit FD-I in real-

time, we performed a classification experiment with the dis-

cussed eye-gaze metrics. Following Toker’s et al. [32] ap-

proach, we divided the activity time in time-slots of 1 second. 

The time-slots start from the first second of the user’s en-

gagement with the password composition task and last until 

the mean time required to complete the task. In each time-

slot, the users were classified either as FD or FI for each of 

the gaze-based metrics and their combination, and an accura-

cy rate (in relation to the ground-truth GEFT classification) 

was calculated. We also compared the classification results 

with those of the baseline model (i.e., all participants are 

classified as FDs in each time-slot according to ZeroR classi-

fier).  

Since classifications are done in consecutively increasing 

time-slots within the password composition task, there are 

cases where users complete the task in less than the mean 

time. We remove these users from our dataset at those time-

slots, to ensure that the results are not biased, given that some 

metrics are correlated with time (e.g., fixation duration). 

Moreover, the baseline, which is based on the ZeroR classifi-

er, is re-calculated in each time-slot. 

Participants 

We recruited 36 individuals (16 females) with an age range 

between 22 and 38 years (m=31.7; sd=6.1), of varying educa-

tional and professional background. Participants had no vi-

sion problems, had never taken a GEFT test before, and had 

no prior experience with GUA schemes (to avoid familiarity 

effects). The participants’ GEFT scores were normally dis-

tributed (m=11.27, sd=3.51, p=.085). To classify each user as 

either FD or FI, we set the GEFT cut-off score at 12, a score 

that is widely used in the literature [1,27]. 17 participants 

were classified as FD (score: 0-11), and 19 were classified as 

FI (score: 12-18).  



 

Figure 1: Classification accuracy across time-slots based on eye-gaze metrics. 

Study Procedure 

The study was conducted in a quiet room in our lab in one-to-

one sessions and involved the following steps: i) the partici-

pants were introduced to the task and familiarized with the 

eye-tracking equipment, ii) we calibrated the eye-tracker 

following the process described in [31], iii) the participants 

used a provided background picture and drew a graphical 

password on it, iv) they completed GEFT, v) we asked them 

to log-in using their credentials to ensure they did not create 

the passwords randomly, and vi) we performed the classifica-

tion experiment using the collected and calculated eye-gaze 

data. 

RESULTS 

To investigate our research questions we used WEKA soft-

ware [9], following a 10-fold classification approach, mainly 

due to our small sample size. Regarding Q1, we tested several 

classifiers (Logistic Regression, Naïve Bayes, k-Nearest 

Neighbors, Classification and Regression Trees, and Support 

Vector Machines), towards the percentage of the correctly 

classified instances, with Logistic Regression (LR) providing 

the best results. 

The results revealed that the peak accuracy was achieved 

towards the last time-slots (e.g., 72% accuracy for fixation 

count at the 19th and the 20th second). We should note that the 

high accuracies achieved towards the last time-slots could be 

due to some users completing the task in previous time-slots 

(e.g., the first user created the password at the 13th time-slot). 

Nonetheless, there was an upward trend of the combined 

model after the 4th second (Figure 1, Table 1).  

Early prediction capabilities are of major importance for the 

present work, considering that the aim is to identify the user’s 

cognitive style at the early stages of the password composi-

tion task. This will enable the delivery of suitable assistive 

and/or adaptive mechanisms during registration which could 

influence the users’ decisions towards more secure and 

memorable passwords. Moving towards this direction, the 

LR classifier achieved maximum accuracies (over 63%) be-

tween the 6th and 10th time-slot and performed better than the 

baseline in all time-slots (apart from the 4th). The LR classifi-

er provided the best results, regarding classification accuracy, 

when all the eye-gaze metrics were considered (Table 1).   

  

Metric Time-slot FD FI Overall 

Fixation count 6 12/17 12/19 66.67% 

 7 12/17 13/19 69.44% 

 8 11/17 14/19 69.44% 

Fixation duration 7 13/17 10/19 63.89% 

Saccade length 6 14/17 10/19 66.67% 

Combined metrics 6 12/17 13/19 69.44% 

 7 11/17 14/19 69.44% 

 10 11/17 14/19 69.44% 

Table 1: Maximum early prediction accuracies.  



Metric Importance Imp. Level 

Saccade length – total 100.00% High 

Fixation rate 90.30%  

Fixation duration – mean  88.81% Moderate 

Fixation duration – total 86.57%  

Saccade length – mean  85.07%  

Fixation duration – max  84.33%  

Saccade length – max  73.13%  

Fixation count – total  58.21% Low 

Saccade length – std  56.72%  

Fixation duration – std  53.73%  

Table 2: Most predictive metrics across all time-slots. 

Regarding Q2, we report the importance scores based on how 

much each metric contributes to making successful predic-

tions. Since the classifier is constructed at each time-slot, we 

determine the features with the highest importance by aver-

aging their scores across all time-slots, as in [32]. The aver-

ages are normalized so that the most important feature has a 

score of 100 (Table 2). Focusing on the FD-I style, our anal-

ysis on the accuracy of each class revealed that different met-

rics performed best for classifying the FDs and the FIs in 

terms of F-measure. For the classification of the FDs, the 

most effective metric was the saccade length (F = .795), 

while for the classification of the FIs, the most effective met-

ric was the fixation count (F = .767). This could be attributed 

to the visual behavior differences between the FD and the FI 

individuals in terms of fixations and saccades, as FDs tend to 

produce more fixations than FIs [20,25], and they search in a 

more unarticulated and disoriented way [22,35], visually 

scanning different areas, producing saccades of larger length. 

DISCUSSION 

We explored the feasibility of building a classifier that identi-

fies the user’s FD-I cognitive style after collecting a few sec-

onds of eye-gaze data during a graphical password composi-

tion task. Our classifier was based on the Logistic Regression 

model and outperformed the baseline classifier providing 

higher accuracy rates across time-slots. Focusing on the early 

time-slots (before the user drew the first gesture), the classifi-

er achieved comparably similar accuracy with the accuracy 

towards the last time-slots.  

Considering that studies have revealed effects of FD-I on 

password security [14] and usability [3], the classifier could 

be used to provide adaptive and/or assistive mechanisms for 

GUA schemes, such as the one described in [15], based on 

the individual cognitive styles elicited in real time. This 

could be used in combination with adaptive policies [28] to 

provide appropriate mechanisms for password composition 

and/or login. For example, given the less analytic nature of 

FDs, mechanisms that draw attention to overlooked areas of 

the background image could be used. On the other hand, giv-

en that FIs tend to pay attention to details, images could be 

blurred to deemphasize details and enable FIs to have a more 

holistic view of the image.  

The results indicated that different eye-gaze metrics per-

formed better for the FDs and the FIs, in terms of F-measure 

(precision and recall). Higher classification accuracy was 

achieved for the FDs when using the saccade length metric, 

whilst for the FIs when using the fixation count metric. This 

finding could drive the development of a mechanism based 

on combined classifiers, which could possibly achieve higher 

accuracies towards the FD-I classification. Furthermore, the 

classification mechanism could be complemented with more 

eye-gaze metrics and other interaction features to improve 

accuracy. 

Study Validity and Limitations 

Regarding internal validity, the study environment and the 

study procedure and instruments remained the same for all 

the participants. Focusing on the study instruments, we used 

GEFT to classify an individual as either FD or FI based on a 

cut-off score. Given that the GEFT test highlights cognitive 

differences along a continuum scale, the use of a cut-off 

might not classify correctly individuals that fall in between 

the two endpoints. However, the sample’s mean GEFT score 

was comparable to general public scores across populations 

with varying demographics [1,11,16]. Regarding classifica-

tion, further work towards selecting task-specific areas of 

interest could improve the classification accuracy. Regarding 

the external validity of the study, given that our approach is 

based mainly on eye-gaze metrics gathered and calculated in 

real time within a visual search task (i.e., password composi-

tion), we are positive that reasonably accurate predictions 

could be achieved for other visual search activities in GUA 

(e.g., recognition-based schemes) and other domains (e.g., 

gaming, automotive).  

CONCLUSIONS 

In this paper we investigated the feasibility of classifying 

users in real-time based on their FD-I style, using eye-

tracking data during a graphical password composition task. 

Results revealed that classification is possible at the early 

stages of the task. Identifying the user’s FD-I style early dur-

ing graphical password composition could be used to intro-

duce assistive mechanisms to help users make better pass-

word choices. The results are encouraging for further investi-

gating various experimental designs for improving the accu-

racy of real-time cognitive style classifiers. A  

multi-level classification approach based on the combination 

of the FD-I most predictive metrics could be adopted during 

graphical password composition, to predict the users’ FD-I 

style more accurately and assist them to create stronger and 

more memorable passwords. 
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